A Negative Theorem on Superpositions

R. Kaufman
Department of Mathematics, University of Illinois, Urbana, Illinois 61801
Communicated by G. G. Lorentz

Received November 16, 1974

Let V be a bounded open set in Euclidean space $R^{n}(n \geqslant 2)$ and f_{1}, \ldots, f_{r} continuously differentiable mappings of V into R^{n-1}, of rank $n-1$ everywhere on V. (This is not essential, as explained in [4].) The set $S\left(f_{1}, \ldots, f_{r}\right)$ consisting of all sums $\sum g_{\kappa} \circ f_{\kappa}$, wherein each g_{κ} is bounded and continuous on all of R^{n-1}, is the linear space of superpositions. When E is a compact subset of V, we say that $S\left(f_{1}, \ldots, f_{r}\right)$ covers the Banach space $C(E)$, if the restriction of the functions in S, to E, represent all continuous real functions on E. This never occurs when E has interior points, and the same analysis is valid when E has positive Lebesgue measure [4]. A more interesting theorem concerns sets E with this negative property in relation to $S\left(f_{1}, \ldots, f_{r}\right)$, but favorably disposed for representation of continuous functions by superposition.

Theorem. There exists a compact set $E \subseteq V$, on which $S\left(f_{1}, \ldots, f_{r}\right)$ fails to cover C, while all mappings of class $C^{1}\left(V^{-}\right)$, except a set of first category, are one-one on E.

In proving that $S\left(f_{1}, \ldots, f_{r}\right)$ is of first category in $C(E)$ we find a measure $\mu \geqslant 0, \mu \neq 0$, carried by E, and unimodular continuous function ψ_{j}, so that

$$
\left|\int \psi_{j}(x) g \circ f_{\kappa}(x) \mu(d x)\right| \leqslant \epsilon_{j}\|g\|_{\infty}, \quad 1 \leqslant \kappa \leqslant r
$$

with $\lim \epsilon_{j}=0$. The first step in formation of a set E of this type, in combination with the positive property relative to $C^{1}\left(V^{-}\right)$, is selection of a special set of basis vectors in R^{n}. Let $\Gamma_{1}(x), \ldots, \Gamma_{r}(x)$ be the $(n-1)$ dimensional subspaces of R^{n}, spanned by the Jacobian matrices of f_{1}, \ldots, f_{r} at x. Then each Γ_{κ} depends continuously on x, when construed as an element of a certain (Grassmannian) manifold of subspaces, whence the measurability of certain sets is assured, and the validity of Fubini's theorem.

Lemma. There exists a basis u_{1}, \ldots, u_{n} of R^{n} and a set N of measure 0 in V such that for each integral combination $p_{1} u_{1}+\cdots+p_{n} u_{n} \neq 0$,

$$
p_{1} u_{1}+\cdots+p_{n} u_{n} \notin \cup \Gamma_{\kappa}(x), \quad \text { unless } x \in N .
$$

Proof. The vectors u_{1}, \ldots, u_{n} are chosen from the space $R^{n^{2}}=$ $R^{n} \times \cdots \times R^{n}$ so that almost all choices $U=\left(u_{1}, \ldots, u_{n}\right)$ from a basis for R^{n}. Let Γ be a set of Lebesgue, measure 0 in R^{n}, then the set

$$
U: p_{1} x_{1}+\cdots+p_{n} x_{n} \in \Gamma
$$

has measure 0 in $R^{n^{2}}$, provided $\left|p_{1}\right|+\cdots+\left|p_{n}\right|>0$. Setting $\Gamma=\bigcup \Gamma_{\kappa}(x)$, for x in V, we obtain the lemma by applying Fubini's theorem to the space $R^{n^{2}} \times V$.

Henceforth u_{1}, \ldots, u_{n} is a special basis and H a compact subset of $V \sim N$. Let φ be an element of the Lebesgue space $L^{1}(H) \subseteq L^{1}(V)$ and $w=p_{1} u_{1}+\cdots+p_{n} u_{n} \neq 0$. The mapping $F=\left(w \cdot x, f_{\kappa}(x)\right)$ into $R^{1} \times R^{n-1}=R^{n}$ is nonsingular everywhere on H. The implicit function theorem and a change of variables, lead to an identity

$$
\int_{R^{n}} h(w \cdot x) g \circ f_{\kappa}(x) \cdot \varphi(x) d x=\int_{R^{n}} h\left(y_{1}\right) g\left(y_{2}, \ldots, y_{n}\right) \tilde{\varphi}(y) d y
$$

for all bounded functions h on R^{1} and g on R^{n-1}, where $\tilde{\varphi}$ depends on φ, w, κ and $\|\tilde{\varphi}\|_{1}=\|\varphi\|_{1}$. From this we obtain the basic inequality.

$$
\left|\int h(w \cdot x) g \circ f_{\kappa} \cdot \varphi(x) d x\right| \leqslant \int\left|\int h\left(y_{1}\right) \tilde{\varphi}\left(y_{1}, \ldots, y_{r}\right) d y_{1}\right| d y_{2} \cdots d y_{n}
$$

if $|g| \leqslant 1$ on R^{n-1}. If we choose $h_{\lambda}(t)=e^{i \lambda t}$, then the integral on the right tends to 0 as $\lambda \rightarrow+\infty$.

Let φ_{0} be the characteristic function of H; for large enough λ we have

$$
\left|\int h_{\lambda}\left(u_{1} \cdot x\right) g \circ f_{\kappa}(x) \cdot \varphi_{0}(x) d x\right|<\|g\|_{\infty} / 4, \quad 1 \leqslant \kappa \leqslant r
$$

Our plan is to replace the measure $d \mu_{0}(x)=\varphi_{0}(x) d x$, by a sequence of measures μ_{s}, whose closed supports decrease to the required set E. After s steps we attain a function $\varphi_{s}>0$ with these properties:

$$
\begin{gather*}
\left\|\varphi_{0}\right\|_{1}<2\left\|\varphi_{s}\right\|_{1}<4\left\|\varphi_{0}\right\|_{1}, \tag{1}\\
\left|\int h_{\lambda_{j}}\left(u_{1} \cdot x\right) g \circ f_{\kappa} \cdot \varphi_{s}(x) d x\right| \leqslant \epsilon_{j}\|g\|_{\infty}, \quad 1 \leqslant \kappa \leqslant r \tag{2}
\end{gather*}
$$

where $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{s}$ are real and $\epsilon_{j}<2^{-j-1}, 0 \leqslant j \leqslant s$. The functions $h_{\lambda_{j}}$ are, of course, the ψ_{j} 's mentioned before.

To continue the process, of constructing our sequence of measures and functions, we take a function $T \geqslant 0$, of period 2π in each variable and of class $C^{\infty}\left(R^{n}\right)$, and of mean-value 1 , and (most important) $T\left(t_{1}, \ldots, t_{n}\right)=0$ unless $\left|t_{\kappa}\right|<2^{-s}$ (modulo 2π) for each coordinate. We shall set $\varphi_{s+1}=$ $T\left(Y u_{1} \cdot x, \ldots, Y u_{n} \cdot x\right) \varphi_{s}$ for large Y so that $\varphi_{s+1} \geqslant 0$ and the closed support of μ_{s+1} is contained in that of μ_{s}. Now T admits an absolutely convergent Fourier expansion

$$
T(t)-1=\sum^{\prime} a\left(p_{1}, \ldots, p_{n}\right) \exp i\left(p_{1} t_{1}+\cdots+p_{n} t_{n}\right)
$$

Observe that if we replace t_{κ} by $Y u_{\kappa} \cdot x$ the sum can then be abbreviated $\sum_{w}^{\prime} a(w) \exp i Y(w \cdot x)$, wherein w takes all nonzero values $p_{1} u_{1}+\cdots+p_{n} u_{n}$. In combination with the absolute convergence $\sum|a(w)|<\infty$ and calculations made above, this leads to inequalities (for $1 \leqslant \kappa \leqslant r, 0 \leqslant j \leqslant s$

$$
\begin{aligned}
& \left|\int\left[T\left(Y u_{1} \cdot x, \ldots, Y u_{n} \cdot x\right)-1\right] g \circ f_{k}(x) \cdot \varphi_{s}(x) \psi_{j}(x) d x\right| \\
& \quad<\eta(Y)\|g\|_{\infty}, \quad \text { where } \eta(\infty)=0
\end{aligned}
$$

For large numbers Y, this yields the first $s+1$ inequalities of (2) for φ_{s+1} with $\epsilon_{j}^{\prime}<2^{-j-1}$, and we obtain the last inequality by fixing Y and choosing $\psi_{s+1}=\exp \left(\lambda u_{1} \cdot x\right)$ for a large number λ_{s+1}. To attain the inequalities on $\left\|\varphi_{s+1}\right\|_{1}$ we have merely to write $g=1$ and replace ψ_{j} by 1 .

The weak* limit of the sequence (μ_{s}) obviously has the negative property required of μ, with the given sequence ψ_{j}. Moreover, on the support E of μ

$$
\left|y_{s} u_{1} \cdot x\right| \leqslant 2^{-s}, \ldots,\left|y_{s} u_{n} \cdot x\right| \leqslant 2^{-s} \quad \text { (modulo } 2 \pi \text {) }
$$

for a sequence $y_{s} \rightarrow+\infty$. For $n=2$, sets with this property were investigated in [2] under the name Dirichlet sets. It was proved that $C^{1}\left(V^{-}\right)$contains a residual set of mappings, one-one on E; in fact for each f in $C^{1}\left(V^{-}\right)$there is a g of this type, so that the first partial derivatives of $f-g$ vanish everywhere on E. In particular, f can be one of the coordinates of f_{1}. The analysis for the case $n=2$ applies with few changes in general, and the proof is thereby complete.

A somewhat different method allows us to construct a set E_{1}, so that $S\left(f_{1}, \ldots, f_{r}\right)$ does not cover $C\left(E_{1}\right)$, but some linear form L is one-one on E_{1}. (Hence L is real-analytic, while the category method of [2] produces only C^{1} functions.) The proof of this consists in constructing a set E_{1} with a far stronger property (borrowed from Fourier analysis [5, Chap. 5; 1, Chap. 7]): each continuous function on E_{1}, of modulus 1, is a uniform limit of
exponentials $e(x)=e^{i y L(x)}$. To prove this we have only to find an open set on which each mapping $\left(L, f_{1}\right), \ldots,\left(L, f_{r}\right)$ is a diffeomorphism into R^{n}. The formation of E_{1}, and the proof that $S\left(f_{1}, \ldots, f_{r}\right)$ does not cover $C\left(E_{1}\right)$, then follows the inductive procedure of [3].

References

1. J.-P. Kahane, Séries de Fourier absolument convergentes, Ergebnisse Math. Bd. 50 (1970).
2. R. Kaufman, A metric property of some planar sets, Colloq. Math. 23 (1971), 117-120.
3. R. Kaufman, Topics on Kronecker sets. Ann. Inst. Fourier (Grenoble) 23 (1973), 65-73.
4. R. Kaufman, Linear superpositions of smooth functions, Proc. Amer. Math. Soc. 46 (1974), 360-362.
5. W. Rudin, "Fourier Analysis on Groups," Interscience, New York, 1962.
