A Negative Theorem on Superpositions

R. KAUFMAN

Department of Mathematics, University of Illinois, Urbana, Illinois 61801 Communicated by G. G. Lorentz Received November 16, 1974

Let V be a bounded open set in Euclidean space R^n $(n \ge 2)$ and $f_1, ..., f_r$ continuously differentiable mappings of V into R^{n-1} , of rank n-1 everywhere on V. (This is not essential, as explained in [4].) The set $S(f_1, ..., f_r)$ consisting of all sums $\sum g_{\kappa} \circ f_{\kappa}$, wherein each g_{κ} is bounded and continuous on all of R^{n-1} , is the linear space of *superpositions*. When E is a compact subset of V, we say that $S(f_1, ..., f_r)$ covers the Banach space C(E), if the restriction of the functions in S, to E, represent all continuous real functions on E. This never occurs when E has interior points, and the same analysis is valid when E has positive Lebesgue measure [4]. A more interesting theorem concerns sets E with this negative property in relation to $S(f_1, ..., f_r)$, but favorably disposed for representation of continuous functions by superposition.

THEOREM. There exists a compact set $E \subseteq V$, on which $S(f_1, ..., f_r)$ fails to cover C, while all mappings of class $C^1(V^-)$, except a set of first category, are one-one on E.

In proving that $S(f_1,...,f_r)$ is of first category in C(E) we find a measure $\mu \ge 0, \ \mu \ne 0$, carried by E, and unimodular continuous function ψ_j , so that

$$\left|\int \psi_j(x) g \circ f_{\kappa}(x) \mu(dx)\right| \leqslant \epsilon_j \, \| \, g \, \|_{\infty} \, , \qquad 1 \leqslant \kappa \leqslant r,$$

with $\lim \epsilon_j = 0$. The first step in formation of a set *E* of this type, in combination with the positive property relative to $C^1(V^-)$, is selection of a special set of basis vectors in \mathbb{R}^n . Let $\Gamma_1(x), \ldots, \Gamma_r(x)$ be the (n-1)-dimensional subspaces of \mathbb{R}^n , spanned by the Jacobian matrices of f_1, \ldots, f_r at *x*. Then each Γ_{κ} depends continuously on *x*, when construed as an element of a certain (Grassmannian) manifold of subspaces, whence the measurability of certain sets is assured, and the validity of Fubini's theorem.

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved.

R. KAUFMAN

LEMMA. There exists a basis $u_1, ..., u_n$ of \mathbb{R}^n and a set N of measure 0 in V such that for each integral combination $p_1u_1 + \cdots + p_nu_n \neq 0$,

$$p_1u_1 + \cdots + p_nu_n \notin \cup \Gamma_\kappa(x),$$
 unless $x \in N$.

Proof. The vectors $u_1, ..., u_n$ are chosen from the space $\mathbb{R}^{n^2} = \mathbb{R}^n \times \cdots \times \mathbb{R}^n$ so that almost all choices $U = (u_1, ..., u_n)$ from a basis for \mathbb{R}^n . Let Γ be a set of Lebesgue_j measure 0 in \mathbb{R}^n , then the set

$$U: p_1 x_1 + \cdots + p_n x_n \in \Gamma$$

has measure 0 in \mathbb{R}^{n^2} , provided $|p_1| + \cdots + |p_n| > 0$. Setting $\Gamma = \bigcup \Gamma_{\kappa}(x)$, for x in V, we obtain the lemma by applying Fubini's theorem to the space $\mathbb{R}^{n^2} \times V$.

Henceforth $u_1, ..., u_n$ is a special basis and H a compact subset of $V \sim N$. Let φ be an element of the Lebesgue space $L^1(H) \subseteq L^1(V)$ and $w = p_1 u_1 + \cdots + p_n u_n \neq 0$. The mapping $F = (w \cdot x, f_{\kappa}(x))$ into $R^1 \times R^{n-1} = R^n$ is nonsingular everywhere on H. The implicit function theorem and a change of variables, lead to an identity

$$\int_{\mathbb{R}^n} h(w \cdot x) g \circ f_{\kappa}(x) \cdot \varphi(x) dx = \int_{\mathbb{R}^n} h(y_1) g(y_2, ..., y_n) \tilde{\varphi}(y) dy$$

for all bounded functions h on R^1 and g on R^{n-1} , where $\tilde{\varphi}$ depends on φ , w, κ and $\|\tilde{\varphi}\|_1 = \|\varphi\|_1$. From this we obtain the basic inequality.

$$\left|\int h(w \cdot x) g \circ f_{\kappa} \cdot \varphi(x) dx\right| \leq \int \left|\int h(y_1) \tilde{\varphi}(y_1, ..., y_r) dy_1\right| dy_2 \cdots dy_n$$

if $|g| \leq 1$ on \mathbb{R}^{n-1} . If we choose $h_{\lambda}(t) = e^{i\lambda t}$, then the integral on the right tends to 0 as $\lambda \to +\infty$.

Let φ_0 be the characteristic function of H; for large enough λ we have

$$\left|\int h_{\lambda}(u_{1}\cdot x) g \circ f_{\kappa}(x) \cdot \varphi_{0}(x) dx\right| < ||g||_{\infty}/4, \qquad 1 \leqslant \kappa \leqslant r.$$

Our plan is to replace the measure $d\mu_0(x) = \varphi_0(x) dx$, by a sequence of measures μ_s , whose closed supports decrease to the required set *E*. After *s* steps we attain a function $\varphi_s > 0$ with these properties:

$$\| \varphi_0 \|_1 < 2 \| \varphi_s \|_1 < 4 \| \varphi_0 \|_1, \qquad (1)$$

$$\left|\int h_{\lambda_j}(u_1\cdot x)\,g\circ f_\kappa\cdot\varphi_s(x)\,dx\,\right|\leqslant \epsilon_j\,\|\,g\,\|_\infty\,,\qquad 1\leqslant\kappa\leqslant r,\qquad(2)$$

where λ_0 , λ_1 ,..., λ_s are real and $\epsilon_j < 2^{-j-1}$, $0 \le j \le s$. The functions h_{λ_j} are, of course, the ψ_i 's mentioned before.

To continue the process, of constructing our sequence of measures and functions, we take a function $T \ge 0$, of period 2π in each variable and of class $C^{\infty}(\mathbb{R}^n)$, and of mean-value 1, and (most important) $T(t_1, ..., t_n) = 0$ unless $|t_{\kappa}| < 2^{-s}$ (modulo 2π) for each coordinate. We shall set $\varphi_{s+1} = T(Yu_1 \cdot x, ..., Yu_n \cdot x) \varphi_s$ for large Y so that $\varphi_{s+1} \ge 0$ and the closed support of μ_{s+1} is contained in that of μ_s . Now T admits an absolutely convergent Fourier expansion

$$T(t) - 1 = \sum' a(p_1, ..., p_n) \exp i(p_1 t_1 + \cdots + p_n t_n).$$

Observe that if we replace t_{κ} by $Yu_{\kappa} \cdot x$ the sum can then be abbreviated $\sum_{w}^{\prime} a(w) \exp iY(w \cdot x)$, wherein w takes all nonzero values $p_{1}u_{1} + \cdots + p_{n}u_{n}$. In combination with the absolute convergence $\sum |a(w)| < \infty$ and calculations made above, this leads to inequalities (for $1 \leq \kappa \leq r$, $0 \leq j \leq s$

$$\left| \int [T(Yu_1 \cdot x, ..., Yu_n \cdot x) - 1] g \circ f_{\kappa}(x) \cdot \varphi_s(x) \psi_j(x) dx \right|$$

$$< \eta(Y) ||g||_{\infty}, \quad \text{where } \eta(\infty) = 0.$$

For large numbers Y, this yields the first s + 1 inequalities of (2) for φ_{s+1} with $\epsilon_j' < 2^{-j-1}$, and we obtain the last inequality by fixing Y and choosing $\psi_{s+1} = \exp(\lambda u_1 \cdot x)$ for a large number λ_{s+1} . To attain the inequalities on $\|\varphi_{s+1}\|_1$ we have merely to write g = 1 and replace ψ_j by 1.

The weak* limit of the sequence (μ_s) obviously has the negative property required of μ , with the given sequence ψ_i . Moreover, on the support E of μ

$$|y_s u_1 \cdot x| \leq 2^{-s}, \dots, |y_s u_n \cdot x| \leq 2^{-s} \pmod{2\pi}$$

for a sequence $y_s \to +\infty$. For n = 2, sets with this property were investigated in [2] under the name *Dirichlet sets*. It was proved that $C^1(V^-)$ contains a residual set of mappings, one-one on E; in fact for each f in $C^1(V^-)$ there is a g of this type, so that the first partial derivatives of f-g vanish everywhere on E. In particular, f can be one of the coordinates of f_1 . The analysis for the case n = 2 applies with few changes in general, and the proof is thereby complete.

A somewhat different method allows us to construct a set E_1 , so that $S(f_1, ..., f_r)$ does not cover $C(E_1)$, but some linear form L is one-one on E_1 . (Hence L is real-analytic, while the category method of [2] produces only C^1 functions.) The proof of this consists in constructing a set E_1 with a far stronger property (borrowed from Fourier analysis [5, Chap. 5; 1, Chap. 7]): each continuous function on E_1 , of modulus 1, is a uniform limit of

R. KAUFMAN

exponentials $e(x) = e^{iyL(x)}$. To prove this we have only to find an open set on which each mapping $(L, f_1), ..., (L, f_r)$ is a diffeomorphism into \mathbb{R}^n . The formation of E_1 , and the proof that $S(f_1, ..., f_r)$ does not cover $C(E_1)$, then follows the inductive procedure of [3].

REFERENCES

- 1. J.-P. KAHANE, Séries de Fourier absolument convergentes, Ergebnisse Math. Bd. 50 (1970).
- 2. R. KAUFMAN, A metric property of some planar sets, Collog. Math. 23 (1971), 117-120.
- 3. R. KAUFMAN, Topics on Kronecker sets. Ann. Inst. Fourier (Grenoble) 23 (1973), 65-73.
- 4. R. KAUFMAN, Linear superpositions of smooth functions, Proc. Amer. Math. Soc. 46 (1974), 360-362.
- 5. W. RUDIN, "Fourier Analysis on Groups," Interscience, New York, 1962.