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Let V be a bounded open set in Euclidean space R* (n = 2) and f; ,..., f;
continuously differentiable mappings of V into R*-1, of rank n — 1 every-
where on V. (This is not essential, as explained in [4].) The set S(f; ,...,fr)
consisting of all sums Y g, o f, , wherein each g, is bounded and continuous
on all of R*1, is the linear space of superpositions. When E is a compact
subset of ¥, we say that S(f;,...,f,) covers the Banach space C(E), if the
restriction of the functions in S, to E, represent all continuous real functions
on E. This never occurs when E has interior points, and the same analysis
is valid when FE has positive Lebesgue measure [4]. A more interesting theorem
concerns sets £ with this negative property in relation to S(f; ,...,f;), but
favorably disposed for representation of continuous functions by super-
position.

THEOREM. There exists a compact set EC V, on which S(f; ,...,f;) fails
to cover C, while all mappings of class CX(V™), except a set of first category,
are one-one on E.

In proving that S(f; ,...,f,) is of first category in C(E) we find a measure
@ = 0, p 7 0, carried by E, and unimodular continuous function #;, so
that

(b2 f@ndn) <elglo, 1<e<n

with lim e; = 0. The first step in formation of a set E of this type, in
combination with the positive property relative to C1(}J-), is selection of a
special set of basis vectors in R”. Let Iy(x),..., I'(x) be the (n — I)-
dimensional subspaces of R, spanned by the Jacobian matrices of f; ...., f;
at x. Then each I', depends continuously on x, when construed as an element
of a certain (Grassmannian) manifold of subspaces, whence the measurability
of certain sets is assured, and the validity of Fubini’s theorem.
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LeEMMA. There exists a basis u, ,..., u, of R* and a set N of measure 0 in V
such that for each integral combination pyu; + - + pyu, # 0,

Pty + o pat, U L (x), unless x e N.

Proof. The vectors u,,..,u, are chosen from the space R™ =
R™ X -+ X R"so that almost all choices U = (4 ,..., 4,) from a basis for R,
Let I" be a set of Lebesgueymeasure 0 in R”, then the set

Uipyxy + - + paxpel

has measure 0in R, provided | p; | + - + | p. | > 0. Setting I' = | I'(x),
for x in ¥V, we obtain the lemma by applying Fubini’s theorem to the space
R® X V.

Henceforth u, ,..., u, is a special basis and A a compact subset of V' ~ N.
Let ¢ be an element of the Lebesgue space LYH)C LY V) and
w = pjy + - + pu, # 0. The mapping F = (w-x, f(x)) into
R X R*-1 = R is nonsingular everywhere on H. The implicit function
theorem and a change of variables, lead to an identity

[ 1 0gef @) w0 de=[ K3 g(rnrms ) G dy

for all bounded functions # on R* and g on R*-1, where ¢ depends on ¢, w, «
and || §[l; = || ¢ll; . From this we obtain the basic inequality.

[[1ow - D g0 S 90y dx | <[|[ 12D G0 s v |y - dy

if [g] < 1on R If we choose k,(t) = ¢, then the integral on the right
tends to 0 as A — 4 co.
Let g, be the characteristic function of H; for large enough A we have

[ - ) g 210 - o) dx | <lgllafd, 1<k <r,

Our plan is to replace the measure duy(x) = po(x) dx, by a sequence of
measures u, , whose closed supports decrease to the required set E. After s
steps we attain a function ¢, > 0 with these properties:

Teolh <2l @uth <4l @ollys 1)

[ -Dgofe-pde| <ellgh,, 1<e<rn @
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where A, A, ,..., A, are real and ¢; < 2771, 0 < j < 5. The functions &, are,
of course, the ;s mentioned before.

To continue the process, of constructing our sequence of measures and
functions, we take a function T > 0, of period 2 in each variable and of
class C*(R"), and of mean-value 1, and (most important) T(¢,,...,t,) =0
unless |7, ! < 2= (modulo 27) for each coordinate. We shall set ¢..; =
T(Yuy - x,..., Yu,, - x) ¢, for large Y so that ¢,,, > 0 and the closed support
of p,., is contained in that of p,. Now T admits an absolutely convergent
Fourier expansion

T(1) — 1 =Y"a(p; ;... Pn) €XP i(prty + = -+ Putn).

Observe that if we replace ¢, by Yu, - x the sum can then be abbreviated
>, a(w) exp iY(w - x), wherein w takes all nonzero values pyu; + -+ + p,u, .
In combination with the absolute convergence > | a(w)| << oo and calcu-
lations made above, this leads to inequalities (for | <« <r,0 <j <5

[T, e Yty ) = 1 g2 £3) - ) () e
<7(YV)ligle,  wheren(o0)=0.

For large numbers Y, this yields the first s 4+ 1 inequalities of (2) for ¢,
with €;/ << 27971, and we obtain the last inequality by fixing ¥ and choosing
g1 = exp(Auy - x) for a large number A,,, . To attain the inequalities on
Il pss1 /i we have merely to write g = 1 and replace ; by 1.

The weak* limit of the sequence (u;) obviously has the negative property
required of u, with the given sequence i; . Moreover, on the support F of p

| youy * x| <275, | gty » x| <278 (modulo 27)

for a sequence y, — -+ oo. Forn = 2, sets with this property were investigated
in [2] under the name Dirichlet sets. It was proved that C(V-) contains a
residual set of mappings, one-one on E; in fact for each fin CY(V-) there is a
g of this type, so that the first partial derivatives of f~g vanish everywhere
on E. In particular, fcan be one of the coordinates of f; . The analysis for the
case n = 2 applies with few changes in general, and the proof is thereby
complete.

A somewhat different method allows us to construct a set E;, so that
S(f; »--»fr) does not cover C(E,;), but some linear form L is one-one on E; .
{Hence L is real-analytic, while the category method of [2] produces only C!
functions.) The proof of this consists in constructing a set E, with a far
stronger property (borrowed from Fourier analysis [S, Chap. 5; 1, Chap. 7]):
each continuous function on E;, of modulus 1, is a uniform limit of
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exponentials e(x) = L@, To prove this we have only to find an open set
on which each mapping (L, f}),..., (L, f,) is a diffeomorphism into R*. The
formation of E; , and the proof that S(f; ,...,f,) does not cover C(E,), then
follows the inductive procedure of [3].
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